## Journal of Organometallic Chemistry, 145 (1978) 315–327 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# MOLECULAR STRUCTURE AND MASS SPECTRUM OF DICARBONYLBIS(TETRAPHENYLCYCLOBUTADIENE)MOLYBDENUM

A. EFRATY<sup>\*</sup>, J.A. POTENZA, L. ZYONTZ, J. DAILY, M.H.A. HUANG and B. TOBY Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, N.J. 08903 (U.S.A.)

(Received August 6th, 1976)

### Summary

The crystal structure of dicarbonylbis(tetraphenylcyclobutadiene)molybdenum has been determined from three-dimensional X-ray data collected by counter methods. The structure consists of monomeric units with each Mo atom bonded to two carbonyl and two  $Ph_4C_4$  groups. Excluding phenyl substituents, the local symmetry about Mo is very nearly  $C_{2\nu}$ . Both cyclobutadiene (CBD) groups are asymmetrically bonded to Mo, and the spread in Mo-C(CBD) distances (2.26) to 2.38 Å) is significantly larger than that found with other structures containing substituted cyclobutadiene groups. The carbonyl groups show several short intramolecular C···C contacts with the cyclobutadiene C atoms (2.68 to 3.03). Å) and with each other (2.63 Å). They appear to be wedged between the  $Ph_4C_4$ groups and to be responsible for the asymmetric bonding of the cyclobutadiene groups. The mass spectrum, which shows the characteristic fragmentation pattern of cyclobutadienemetal complexes, suggests a relatively high thermal stability for the title compound. Crystallographic data are as follows: space group  $P2_1/n$ ; unit cell a 20.15(2), b 18.82(3), c 11.03(1) Å,  $\beta$  91.59(6)°; V 4181 Å<sup>3</sup>;  $d_{calc}$  for Z = 4 is 1.380 and  $d_{obs}$  is 1.365(7) g/cm<sup>3</sup>. A total of 1659 reflections with  $F^2 \ge 2\sigma$  were used to refine the structure to final values of  $R_F = 0.063$ and  $R_{mF} = 0.041$ .

## Introduction

Reactions of metal carbonyls with acetylene derivatives have received considerable attention during the last two decades [1]. These reactions are known to yield a wide variety of organometallic and organic products. For example, reaction [2] of Mo(CO)<sub>6</sub> or (diglyme)Mo(CO)<sub>3</sub> with Ph<sub>2</sub>C<sub>2</sub> in benzene at elevated temperature and under pressure yielded as products hexaphenylbenzene, a diketone of formula (Ph<sub>2</sub>C<sub>2</sub>)<sub>3</sub>(CO)<sub>2</sub>, and five different organometallic complexes. Proposed structures for two of these complexes are shown below with phenyl substituents indicated by dashes. Of these reaction products, I is particularly interesting since it is the only known complex for which a dicyclobutadiene



geometry has been proposed \*. The lack of structural data for dicyclobutadienemetal complexes, coupled with the possibility of formulating the complex as III instead of I, prompted the present structural investigation of I.

## Experimental

Synthesis. A sample of I was prepared by a modification of the Hübel and Merényi procedure [2]. A mixture consisting of  $Mo(CO)_6$  (10.8 g, 41 mmol) and  $Ph_2C_2$  (10.8 g, 61 mmol) in 90 ml of benzene was charged into a 300 ml autoclave and heated with stirring to a temperature of  $127(1)^{\circ}C$  for a period of 19 h \*\*. The product mixture was dried under reduced pressure (~1 mmHg,  $30^{\circ}$ C) and unreacted Mo(CO)<sub>6</sub> was removed by sublimation (0.05 mmHg,  $80^{\circ}$ C). The residue obtained was dissolved in benzene ( $\sim 30$  ml) and the resulting yellow solution was chromatographed on a neutral alumina column  $(3.5 \times 75 \text{ cm})$ . A yellow band eluted with a 5/1 v/v mixture of benzene/light petroleum ether (30-60°C) gave, upon drying, ~0.5 g of impure I (m.p. 238-241°C). Further purification of I was accomplished by repeated column chromatography as described above. Recrystallization from methylene chloride/hexane gave finally ~0.1 g of a deep yellow sample of I (m.p. 256–260°C, lit. [2] 255–262°C). Selected analytical and spectroscopic data of I include: Anal.: Found: C, 80.52; H, 4.78; O, 3.99; mol. wt., 861 (Osmometric, CHCl<sub>3</sub>). C<sub>58</sub>H<sub>40</sub>O<sub>2</sub>Mo calcd.: C, 80.60; H, 4.64; O, 3.71%; mol. wt., 865. Infrared spectrum (2200-1600 cm<sup>-1</sup> region, recorded in  $CH_2Cl_2$  solution)  $\nu(CO)$ , 2008 and 1956 (lit. [2] 2004 and 1961 cm<sup>-1</sup>). Mass spectrum (80 eV; inlet temperature, 200°C; chamber temperature, 200°C; recorded on a Hitachi RMU-7E mass spectrometer); (Ph<sub>4</sub>C<sub>4</sub>)<sub>2</sub>Mo(CO)<sub>2</sub><sup>+</sup>  $(M/Z 866, \text{ relative intensity 54}); (Ph_1C_1)_2Mo(CO)^+ (M/Z 838, \text{ relative intensity }$ 3);  $(Ph_1C_1)_2Mo^+$  (M/Z 810, relative intensity 100);  $(Ph_1C_1)(Ph_2C_2)Mo^+$  [M/Z 632, relative intensity 63);  $Ph_4C_4Mo^+$  (M/Z 454, relative intensity 98); ( $Ph_2C_2$ )-Mo<sup>+</sup> (M/Z 276, relative intensity 21); PhCMo<sup>+</sup> (M/Z 187, relative intensity 12);

\* Complex II, which has also been characterized structurally in our laboratory, is more correctly formulated as (CO)<sub>2</sub>(Ph<sub>4</sub>C<sub>5</sub>O)Mo(Ph<sub>2</sub>C<sub>2</sub>)Mo(Ph<sub>4</sub>C<sub>4</sub>)CO. The complex contains a Mo=Mo bond and a bridging cyclopentadienone group [3].

\*\* At this temperature, the major organometallic product found was I with trace amounts of II.

 $Ph_2C_2^+$  (*M*/*Z* 178, relative intensity 47) and Mo<sup>+</sup> (*M*/*Z* 98, relative intensity 6). Here *M*/*Z* is given in terms of the most abundant isotopic species of each element.

Crystal data and data collection. Crystals of I, suitable for X-ray analysis, were obtained by slow evaporation from a toluene/hexane (1/1, v/v) solution. A single crystal of approximate dimensions  $0.21 \times 0.20 \times 0.14$  mm was mounted on the end of a glass rod. Preliminary Weissenberg photographs revealed systematic absences for h0l, h + l = 2n + 1 and for 0k0, k = 2n + 1, fixing the space group as  $P2_1/n$ . Unit cell parameters a 20.15(2), b 18.82(3), c 11.03(1) Å,  $\beta$ 91.59(6)° were determined from a least-squares analysis of 12 reflections obtained using graphite monochromated Mo- $K_{\alpha}$  radiation ( $\lambda$  0.71069 Å) and an Enraf-Nonius CAD-3 automated diffractometer. The calculated volume of the unit cell was 4181 Å<sup>3</sup>, leading to a density of 1.380 g/cm<sup>3</sup> with Z = 4. The observed density, determined by flotation, was 1.365(7) g/cm<sup>3</sup>.

Using a  $\theta - 2\theta$  scan ( $2 < \theta < 20^{\circ}$ ), 4465 reflections were collected at room temperature ( $22 \pm 2^{\circ}$ C). Graphite monochromated Mo- $K_{\alpha}$  radiation was detected with a scintillation counter and a pulse height analyzer set to admit approximately 90% of the  $K_{\alpha}$  peak. The scan range was a function of  $\theta$  chosen according to  $S = (0.8 + 0.9 \tan \theta)^{\circ}$ . A circular aperture 1.3 mm in diameter was placed 4.1 cm from the crystal. Each reflection was scanned rapidly before being recorded and Zr foil attenuators were inserted automatically if the diffracted beam intensity exceeded 6000 cps. Background measurements were made at the beginning and end of each scan with the total time for background counting equal to the scan time. The scan rate was  $1/6^{\circ}$  per second and each reflection was scanned a maximum of six times or until 6000 total counts were obtained. Relative intensities were determined by dividing the total counts by the number of scans. A standard reflection, recorded at fifty reflection intervals, remained consistent to  $\pm 3\%$  throughout the data collection period.

After correction for Lorentz and polarization effects, 1659 reflections with  $F^2 \ge 2\sigma(F^2)$  were used to elucidate and refine the structure. Here,  $\sigma(F^2) = (Lp)^{-1}(N_t + (0.02N_n)^2)^{1/2}$ , where  $N_t$  is the total count (scan plus background),  $N_n$  is the net count (scan minus background), and 0.02 is an estimate of instrumental instability. With  $\mu(\text{Mo-}K_{\alpha}) = 3.6 \text{ cm}^{-1}$ , maximum and minimum absorption factors  $A^*$  were calculated [4] to be 1.07 and 1.05, respectively, for the crystal used to collect the data; consequently, absorption corrections were not applied.

#### Structure determination

The structure was solved by the heavy atom method and refined by fullmatrix least-squares techniques. Approximate coordinates for the unique Mo atom were obtained by analysis of a normal sharpened Patterson map. The remaining non-hydrogen atoms were located in the usual way via a series of structure factor, difference Fourier calculations, each successive difference map being phased by an increasing number of atoms.

In the initial stages of refinement, all phenyl rings were treated as rigid groups of  $D_{6h}$  symmetry with C—C and C—H bond distances of 1.392 and 0.95 Å [5], respectively. The rigid body refinement was accomplished using a local modification of program GROUP, developed by LaPlaca and Ibers [6]; the remaining

# FINAL PARAMETERS " FOR (Pb4C4)2Mo(CO)2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Atom  | x          | У          | Z           | B (Å <sup>2</sup> ) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------------|-------------|---------------------|--|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Мо    | 0.25726(5) | 0.00526(7) | 0.0957(1)   | Ъ                   |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0(1)  | 0.2606(4)  | 0.1568(5)  | 0.0199(8)   | 5.0(3)              |  |
| $\begin{array}{ccccc} C(2) & 0.2582(6) & 0.1026(7) & 0.0260(11) & 4.4(4) \\ C(2) & 0.2428(6) & 0.0559(6) & 0.2487(11) & 3.1(4) \\ C(10) & 0.1839(5) & -0.0788(6) & 0.0091(9) & 1.3(3) \\ C(20) & 0.1592(5) & -0.0540(6) & 0.1271(10) & 1.5(3) \\ C(40) & 0.1728(4) & -0.0094(7) & -0.0427(9) & 1.5(3) \\ C(40) & 0.1728(4) & -0.00737(6) & 0.0642(10) & 1.4(3) \\ C(50) & 0.3628(5) & -0.0737(6) & 0.0678(9) & 1.4(3) \\ C(60) & 0.3628(5) & -0.0737(6) & 0.0678(9) & 1.4(3) \\ C(70) & 0.3628(5) & -0.0148(6) & 0.0378(9) & 1.4(3) \\ C(80) & 0.3427(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ C(11) & 0.1912(5) & -0.1479(6) & -0.0520(10) & 1.9(3) \\ C(12) & 0.2151(6) & -0.1514(7) & -0.1692(11) & 3.5(4) \\ C(13) & 0.2141(6) & -0.2155(7) & -0.2344(11) & 3.2(3) \\ C(14) & 0.1885(6) & -0.2761(7) & -0.0616(11) & 2.8(3) \\ C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(21) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(22) & 0.1378(6) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ C(23) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(24) & 0.0875(6) & -0.0657(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0475(6) & -0.1220(6) & 0.3645(11) & 3.2(4) \\ C(24) & 0.0875(6) & -0.0654(6) & 0.2248(10) & 2.0(3) \\ C(25) & 0.0475(6) & -0.1220(6) & 0.3645(11) & 3.2(4) \\ C(31) & 0.9964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1451(6) & 0.0322(11) & 3.4(3) \\ C(34) & -0.0004(6) & 0.1707(6) & 0.1405(10) & 1.6(3) \\ C(35) & 0.0038(6) & 0.1518(6) & 0.0322(11) & 3.4(3) \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.0331(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.0928(6) & 0.0176(6) & -0.0320(11) & 2.8(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.3269(11) & 2.8(3) \\ C(45) & 0.3371(6) & -0.2708(6) & -0.0074(11) & 2.7(3) \\ C(44) & 0.394(5) & 0.0346(5) & -0.0698(10) & 1.4(3) \\ C(52) & 0.3974(5) & -0.2708(6) & -0.0598(11) & 2.5(3) \\ C(51) & 0.394(5) & 0.0346(5) & -0.0698(10) & 1.4(3) \\ C(52) & 0.3974(5) & -0.2708(6) & -0.0598(11) & 2.5(3) \\ C(51$                                                            | 0(2)  | 0.2358(4)  | 0.0884(5)  | 0.3370(7)   | 5.2(3)              |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(1)  | 0,2582(6)  | 0.1026(7)  | 0.0260(11)  | 4.4(4)              |  |
| $\begin{array}{ccccc} C(20) & 0.1839(5) & -0.0788(6) & 0.0091(9) & 1.3(3) \\ C(20) & 0.1892(5) & -0.0540(6) & 0.1271(10) & 1.5(3) \\ C(30) & 0.1442(5) & 0.0144(6) & 0.0703(9) & 1.6(3) \\ C(40) & 0.1729(4) & -0.0034(7) & -0.0427(9) & 1.5(3) \\ C(50) & 0.3478(5) & -0.0737(6) & 0.0642(10) & 1.4(3) \\ C(60) & 0.3628(5) & 0.0188(6) & 0.0378(9) & 1.4(3) \\ C(70) & 0.3628(5) & 0.0188(6) & 0.0622(10) & 1.9(3) \\ C(20) & 0.3427(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ C(11) & 0.1912(5) & -0.1479(6) & -0.0520(10) & 1.9(3) \\ C(12) & 0.2151(6) & -0.1514(7) & -0.1692(11) & 3.5(4) \\ C(13) & 0.2141(6) & -0.27561(7) & -0.1809(12) & 4.0(4) \\ C(14) & 0.1885(6) & -0.2761(7) & -0.0614(11) & 2.8(3) \\ C(16) & 0.1674(5) & -0.2094(6) & 0.2044(10) & 2.0(3) \\ C(21) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(22) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0695(6) & -0.0643(6) & 0.2466(11) & 2.2(4) \\ C(26) & 0.0695(6) & -0.0643(6) & 0.2466(11) & 2.9(4) \\ C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0558(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1518(6) & 0.0322(11) & 3.4(3) \\ C(34) & -0.0044(6) & 0.1707(5) & 0.1471(12) & 3.4(3) \\ C(34) & -0.0046(6) & 0.1518(6) & 0.0322(11) & 3.4(3) \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.0959(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ C(41) & 0.1634(5) & -0.0134(17) & -0.3579(10) & 3.1(3) \\ C(41) & 0.1634(5) & -0.0134(1) & -0.2431(12) & 3.0(3) \\ C(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.3374(5) & -0.0144(7) & -0.4388(10) & 2.0(3) \\ C(51) & 0.3545(5) & -0.1488(6) & -0.0095(11) & 2.5(3) \\ C(51) & 0.3545(5) & -0.1488(6) & -0.0095(11) & 2.5(3) \\ C(51) & 0.3545(5) & -0.1428(6) & -0.0095(11) & 2.5(3) \\ C(51) & 0.3545(5) & -0.1488(6) & -0.0095(11) & 2.5(3) \\ C(51) & 0.3546(5) & -0.0484(5) & -0.00958(11) & 2.5(3) \\ C(51) & 0.3546(5) & -0.0486(10) & -0.4388(10) & 2.0$                                                             | C(2)  | 0.2428(6)  | 0.0559(6)  | 0.2487(11)  | 3.1(4)              |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(10) | 0.1839(5)  | -0.0788(6) | 0.0091(9)   | 1.3(3)              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(20) | 0,1592(5)  | -0.0540(6) | 0.1271(10)  | 1.5(3)              |  |
| $\begin{array}{cccc} (c40) & 0.1729(4) & -0.0094(7) & -0.0427(9) & 1.5(3) \\ c(50) & 0.3476(5) & -0.0737(6) & 0.0642(10) & 1.4(3) \\ c(70) & 0.3628(5) & 0.0188(6) & 0.1682(10) & 1.9(3) \\ c(70) & 0.3628(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ c(12) & 0.2151(6) & -0.1514(7) & -0.1692(11) & 3.5(4) \\ c(13) & 0.2141(6) & -0.2155(7) & -0.2344(11) & 3.2(3) \\ c(14) & 0.1885(6) & -0.2761(7) & -0.16092(11) & 2.8(3) \\ c(15) & 0.1665(5) & -0.2094(6) & 0.0010(10) & 2.1(3) \\ c(22) & 0.1783(5) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ c(23) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ c(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ c(25) & 0.0695(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ c(25) & 0.0476(6) & -0.1220(6) & 0.3646(11) & 3.2(4) \\ c(26) & 0.0695(6) & -0.0843(6) & 0.2264(11) & 3.2(4) \\ c(26) & 0.0695(6) & -0.0843(6) & 0.23646(11) & 3.2(4) \\ c(26) & 0.0695(6) & -0.0843(6) & 0.23646(11) & 3.2(4) \\ c(26) & 0.0695(6) & -0.0843(6) & 0.23646(11) & 3.2(4) \\ c(26) & 0.0695(6) & -0.0843(6) & 0.2164(12) & 3.6(4) \\ c(33) & 0.3077(6) & 0.1707(6) & 0.1005(10) & 1.6(3) \\ c(34) & -0.004(6) & 0.1707(6) & 0.1005(10) & 1.6(3) \\ c(35) & 0.0080(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ c(36) & 0.0933(5) & 0.1030(5) & 0.0048(11) & 2.8(3) \\ c(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ c(44) & 0.1394(6) & 0.0214(6) & -0.2304(10) & 2.6(3) \\ c(43) & 0.0293(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ c(44) & 0.1394(6) & 0.0214(6) & -0.2436(11) & 4.0(4) \\ c(45) & 0.1571(5) & 0.0474(6) & -0.2436(11) & 2.7(3) \\ c(52) & 0.3246(5) & -0.2736(7) & -0.1734(9) & 2.5(3) \\ c(51) & 0.3545(5) & -0.2736(6) & -0.0741(11) & 2.7(3) \\ c(52) & 0.3246(5) & -0.2736(6) & -0.0958(11) & 2.5(3) \\ c(51) & 0.3545(5) & -0.128(6) & -0.0958(11) & 2.5(3) \\ c(51) & 0.3545(5) & -0.2736(7) & -0.135(22) & 5.0(4) \\ c(55) & 0.4091(6) & -0.2736(7) & -0.135(22) & 5.0(4) \\ c(55) & 0.4091(6) & -0.2736(7) & -0.135(12) & 3.0(3) \\ c(51) & 0.3545(5) & -0.0386(5) & -0.0696(10) & 1.4(3) \\ c(52) & 0.3763(5) & 0.0538(6) & -0.2857(11) & 3.0(3) \\ c(64) & 0.4351(2) & 0.0638(6) & -0.2857(11) & 3.0(3$                                                             | C(30) | 0.1442(5)  | 0.0144(6)  | 0.0703(9)   | 1.6(3)              |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(40) | 0.1729(4)  | -0.0094(7) | -0.0427(9)  | 1.5(3)              |  |
| $\begin{array}{cccccc} c(5) & 0.3659(4) & -0.0014(6) & 0.0378(6) & 1.4(2) \\ C(70) & 0.3628(5) & 0.0188(6) & 0.1682(10) & 1.9(3) \\ C(80) & 0.3427(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ C(11) & 0.1912(5) & -0.1479(6) & -0.0520(10) & 1.9(3) \\ C(12) & 0.2151(6) & -0.2155(7) & -0.2344(11) & 3.2(3) \\ C(13) & 0.2141(6) & -0.2155(7) & -0.0344(11) & 3.2(3) \\ C(14) & 0.1885(6) & -0.2761(7) & -0.0616(11) & 2.8(3) \\ C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(16) & 0.1674(5) & -0.2094(6) & 0.0010(10) & 2.1(3) \\ C(22) & 0.1783(5) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ C(23) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(25) & 0.0476(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1620(6) & 0.2646(11) & 3.2(4) \\ C(26) & 0.0695(6) & -0.04843(6) & 0.2464(11) & 3.2(4) \\ C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ C(35) & 0.0980(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ C(35) & 0.0980(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ C(35) & 0.0980(6) & 0.1518(6) & -0.22044(10) & 2.6(3) \\ C(42) & 0.1031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.292(5) & 0.0043(7) & -0.1744(9) & 2.1(3) \\ C(44) & 0.292(5) & 0.0041(6) & -0.2246(11) & 4.0(4) \\ C(45) & 0.1571(5) & 0.0474(6) & -0.2304(10) & 2.6(3) \\ C(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.324(6) & -0.2736(7) & -0.1035(12) & 3.0(3) \\ C(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.324(6) & -0.2736(6) & -0.0359(11) & 2.8(3) \\ C(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.3374(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.3374(5) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(54) & 0.3734(5) & 0.0236(5) & -0.0698(11) & 2.5(3) \\ C(51) & 0.3344(5) & 0.0346(5) & -0.0698(11) & 2.5(3) \\ C(51) & 0.3344(5) & 0.0336(6) & -0.2857(11) & 3.0(3) \\ C(52) & 0.374(5) & 0.0338(6) & -0.2857(11) & 3.0(3) \\ C(64) & 0.4035(5) & 0.0538(6) & -0.2825(12) & 3.8(4) \\ C($                                                            | C(50) | 0.3476(5)  | -0.0737(6) | 0.0642(10)  | 1.4(3)              |  |
| $\begin{array}{c} C(70) & 0.36226(5) & 0.0188(6) & 0.1682(10) & 1.9(3) \\ C(80) & 0.3427(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(60) | 0.3659(4)  | -0.0014(8) | 0.0378(9)   | 1.4(2)              |  |
| $\begin{array}{cccccc} C(30) & 0.3427(5) & -0.0550(6) & 0.1911(10) & 1.5(3) \\ \hline C(12) & 0.2151(6) & -0.1514(7) & -0.1692(11) & 3.5(4) \\ C(13) & 0.2141(6) & -0.2155(7) & -0.2344(11) & 3.2(3) \\ C(14) & 0.1865(6) & -0.2761(7) & -0.1809(12) & 4.0(4) \\ C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(16) & 0.1674(5) & -0.2094(6) & 0.0010(10) & 2.1(3) \\ \hline C(22) & 0.1783(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(23) & 0.1539(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(26) & 0.0695(6) & -0.0643(6) & 0.2664(11) & 3.2(4) \\ C(26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 3.2(4) \\ C(26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 3.2(4) \\ C(31) & 0.9644(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.03877(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ C(34) & -0.004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ C(35) & 0.0937(5) & 0.158(6) & 0.0322(11) & 3.4(4) \\ C(36) & 0.0933(5) & 0.1030(6) & 0.0048(11) & 2.8(3) \\ \hline C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.1031(6) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.0925(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ C(45) & 0.1971(5) & 0.0474(6) & -0.2430(10) & 2.6(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.2431(12) & 3.0(3) \\ C(52) & 0.3246(5) & -0.2036(6) & 0.0048(11) & 2.7(3) \\ C(53) & 0.3371(6) & -0.2708(6) & -0.0074(11) & 2.7(3) \\ C(54) & 0.3793(6) & -0.2736(7) & -0.1388(10) & 2.6(3) \\ C(55) & 0.4091(6) & -0.2140(7) & -0.1888(10) & 2.6(3) \\ C(55) & 0.4091(6) & -0.2140(7) & -0.1888(10) & 2.6(3) \\ C(54) & 0.3763(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ C(55) & 0.4091(6) & -0.2140(7) & -0.14870(11) & 4.3(4) \\ C(56) & 0.4705(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ C(55) & 0.4091(6) & -0.2140(7) & -0.1488(10) & 2.6(3) \\ C(55) & 0.4091(6) & -0.2140(7) & -0.1483(10) & 2.6(3) \\ C(65) & 0.4710(5) & 0.0334(6) & -0.2625(12) & 3.8(4) \\ C(65) & 0.4710(5) & 0.0334(6) & -0.2625(12) & 3.8(4) \\ C(65) & 0.4710(5) & 0.0334(6) & -0.0433($                                              | C(70) | 0.3628(5)  | 0.0188(6)  | 0.1682(10)  | 1.9(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(80) | 0.3427(5)  | -0.0550(6) | 0.1911(10)  | 1.5(3)              |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(11) | 0.1912(5)  | -0.1479(6) | -0.0520(10) | 1.9(3)              |  |
| $\begin{array}{ccccc} C(12) & 0.2141(6) & -0.2155(7) & -0.2344(11) & 3.2(3) \\ C(14) & 0.1885(6) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(15) & 0.16574(5) & -0.2994(6) & 0.0010(10) & 2.1(3) \\ \hline C(16) & 0.1674(5) & -0.2994(6) & 0.0010(10) & 2.1(3) \\ \hline C(21) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(22) & 0.1783(6) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ C(23) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1620(7) & 0.3646(11) & 2.9(4) \\ C(26) & 0.0995(6) & -0.0843(6) & 0.2264(11) & 2.9(4) \\ \hline C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1451(6) & 0.4326(11) & 3.4(3) \\ C(34) & -0.004(6) & 0.1518(6) & 0.0322(11) & 3.4(3) \\ C(35) & 0.0080(6) & 0.1518(6) & 0.0048(11) & 2.8(3) \\ \hline C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.0929(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ C(45) & 0.2069(5) & 0.0441(6) & -0.2431(12) & 3.0(3) \\ \hline C(51) & 0.3545(5) & -0.2736(7) & -0.135(12) & 5.0(4) \\ C(52) & 0.3246(5) & -0.2736(7) & -0.135(12) & 5.0(4) \\ C(54) & 0.3793(6) & -0.2708(6) & -0.0074(11) & 2.7(3) \\ C(55) & 0.4091(6) & -0.2708(6) & -0.0078(11) & 2.5(3) \\ C(61) & 0.3948(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ C(52) & 0.376(5) & 0.0214(6) & -0.2857(11) & 3.0(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ C(52) & 0.376(5) & 0.0216(6) & -0.035(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0285(11) & 2.5(3) \\ \hline C(62) & 0.3763(5) & 0.0234(6) & -0.02825(12) & 3.8(4) \\ \hline C(65) & 0.4710(5) & 0.12334(6) & -0.0502(11) & 2.8(4) \\ \hline \end{array}$ | C(12) | 0.2151(6)  | -0.1514(7) | -0.1692(11) | 3.5(4)              |  |
| $\begin{array}{cccccc} C(14) & 0.1885(6) & -0.2761(7) & -0.1809(12) & 4.0(4) \\ C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(16) & 0.1674(5) & -0.2094(6) & 0.0010(10) & 2.1(3) \\ \hline \\ C(21) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(22) & 0.1783(5) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ C(23) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1220(6) & 0.3646(11) & 3.2(4) \\ C(26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 2.9(4) \\ \hline \\ C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ C(34) & -0.0004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ C(35) & 0.0080(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ C(36) & 0.0593(5) & 0.1030(6) & 0.0048(11) & 2.8(3) \\ \hline \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.1031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.0929(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ C(45) & 0.1971(5) & 0.0474(6) & -0.3699(11) & 2.8(3) \\ \hline \\ C(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.324(5) & -0.2035(6) & 0.0469(10) & 2.5(3) \\ C(53) & 0.3371(6) & -0.2708(6) & -0.0137(1) & 4.3(4) \\ C(45) & 0.1971(5) & -0.2738(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.4091(6) & -0.2738(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.3974(5) & -0.1486(6) & -0.0958(11) & 2.5(3) \\ \hline \\ C(51) & 0.3948(5) & 0.0345(5) & -0.0696(10) & 1.4(3) \\ C(62) & 0.3763(5) & 0.0216(6) & -0.2867(11) & 3.0(3) \\ \hline \\ C(61) & 0.3948(5) & 0.0345(5) & -0.0696(10) & 1.4(3) \\ C(62) & 0.3763(5) & 0.0216(6) & -0.2867(11) & 3.0(3) \\ \hline \\ C(64) & 0.4512(6) & 0.1067(6) & -0.2867(11) & 3.0(3) \\ \hline \\ C(65) & 0.4710(5) & 0.1234(6) & -0.0425(12) & 3.8(4) \\ \hline \\ C(65) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ \hline \end{aligned}$                                                                                                                                                                             | C(13) | 0.2141(6)  | -0.2155(7) | -0.2344(11) | 3.2(3)              |  |
| $\begin{array}{cccccc} C(15) & 0.1665(5) & -0.2736(7) & -0.0616(11) & 2.8(3) \\ C(16) & 0.1674(5) & -0.2094(6) & 0.0010(10) & 2.1(3) \\ C(21) & 0.1370(6) & -0.0934(6) & 0.2348(10) & 2.0(3) \\ C(22) & 0.1783(5) & -0.1392(6) & 0.3019(10) & 2.8(3) \\ C(23) & 0.1539(6) & -0.1761(6) & 0.3997(11) & 3.5(4) \\ C(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ C(25) & 0.0476(6) & -0.1220(6) & 0.3646(11) & 2.9(4) \\ C(26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 2.9(4) \\ C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ C(32) & 0.0588(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ C(33) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ C(34) & -0.0004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ C(35) & 0.0593(5) & 0.1030(6) & 0.0048(11) & 2.8(3) \\ C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ C(42) & 0.1031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ C(43) & 0.0925(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ C(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ C(45) & 0.1971(5) & 0.0474(6) & -0.2431(12) & 3.0(3) \\ C(51) & 0.3545(5) & -0.1236(6) & 0.0042(10) & 1.9(3) \\ C(52) & 0.3246(5) & -0.2036(6) & 0.0469(10) & 2.5(3) \\ C(53) & 0.3371(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(54) & 0.3793(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ C(55) & 0.3974(5) & -0.1488(6) & -0.2867(11) & 4.3(4) \\ C(55) & 0.3974(5) & -0.1486(6) & -0.2867(11) & 2.8(3) \\ C(61) & 0.3948(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ C(62) & 0.3763(5) & 0.0214(6) & -0.2868(10) & 2.0(3) \\ C(64) & 0.4512(6) & 0.1067(6) & -0.2868(10) & 2.0(3) \\ C(64) & 0.4512(6) & 0.1067(6) & -0.2867(11) & 3.0(3) \\ C(64) & 0.4512(6) & 0.1067(6) & -0.2867(11) & 2.8(4) \\ C(65) & 0.47110(5) & 0.1234(6) & -0.1437(12) & 3.3(4) \\ C(65) & 0.47110(5) & 0.1234(6) & -0.1437(12) & 3.3(4) \\ C(65) & 0.47110(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ \end{array}$                                                                                                                                                        | C(14) | 0.1885(6)  | -0.2761(7) | -0.1809(12) | 4.0(4)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(15) | 0.1665(5)  | -0.2736(7) | 0.0616(11)  | 2.8(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(16) | 0.1674(5)  | -0.2094(6) | 0.0010(10)  | 2.1(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(21) | 0.1370(6)  | -0.0934(6) | 0.2348(10)  | 2.0(3)              |  |
| $\begin{array}{cccc} (223) & 0.1539(6) & -0.1751(6) & 0.3997(11) & 3.5(4) \\ (2(24) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ (2(25) & 0.0476(6) & -0.1220(6) & 0.3646(11) & 3.2(4) \\ (2(26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 2.9(4) \\ (2(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ (2(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ (2(33) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ (2(34) & -0.0004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ (2(35) & 0.0593(5) & 0.1030(5) & 0.0048(11) & 2.8(3) \\ (2(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ (2(42) & 0.1031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ (2(43) & 0.0929(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ (2(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ (2(45) & 0.1971(5) & 0.0474(6) & -0.3699(11) & 2.8(3) \\ (2(46) & 0.2069(5) & 0.0441(6) & -0.2431(12) & 3.0(3) \\ (2(51) & 0.3545(5) & -0.1428(6) & 0.0042(10) & 1.9(3) \\ (2(52) & 0.3246(5) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (2(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (2(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (2(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (2(55) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (2(55) & 0.4091(6) & -0.2140(7) & -0.1470(11) & 4.3(4) \\ (2(56) & 0.3974(5) & -0.1486(6) & -0.0958(11) & 2.5(3) \\ (2(61) & 0.3974(5) & 0.0346(5) & -0.2687(11) & 3.0(3) \\ (2(62) & 0.3763(5) & 0.0201(6) & -0.1888(10) & 2.0(3) \\ (2(64) & 0.4512(6) & 0.1234(6) & -0.2485(12) & 3.3(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.2485(12) & 3.3(4) \\ (2(64) & 0.4512(6) & 0.1234(6) & -0.1436(6) & -0.2685(11) & 3.0(3) \\ (2(64) & 0.4512(6) & 0.1234(6) & -0.2635(12) & 3.3(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.133(12) & 3.3(4) \\ (2(66) & 0.4419(5) & 0.0834(6) & -0.0502(11) & 2.8(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.1630(12) & 3.3(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (2(65) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (2(66$                                                             | C(22) | 01783(5)   | -0 1392(6) | 0.3019(10)  | 2.8(3)              |  |
| $\begin{array}{cccc} (224) & 0.0876(6) & -0.1667(7) & 0.4346(12) & 4.7(4) \\ (225) & 0.0476(6) & -0.1220(6) & 0.3646(11) & 3.2(4) \\ (226) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 2.9(4) \\ (231) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ (232) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ (233) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ (234) & -0.0004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ (234) & -0.0004(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ (236) & 0.0593(5) & 0.1030(6) & 0.0048(11) & 2.8(3) \\ (241) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ (242) & 0.1031(6) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ (242) & 0.1031(6) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ (243) & 0.0929(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ (244) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ (245) & 0.1971(5) & 0.0474(6) & -0.3699(11) & 2.8(3) \\ (246) & 0.2069(5) & 0.0441(6) & -0.2431(12) & 3.0(3) \\ (252) & 0.3246(5) & -0.2736(6) & 0.0042(10) & 1.9(3) \\ (252) & 0.3246(5) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (255) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (255) & 0.4091(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ (255) & 0.4091(6) & -0.2140(7) & -0.1470(11) & 4.3(4) \\ (265) & 0.3974(5) & -0.1488(6) & -0.0958(11) & 2.5(3) \\ (261) & 0.3948(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ (262) & 0.3763(5) & 0.0201(6) & -0.1888(10) & 2.0(3) \\ (263) & 0.4035(5) & 0.0346(5) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.0346(5) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.0336(6) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.0336(6) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.0336(6) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.01234(6) & -0.2867(11) & 3.0(3) \\ (264) & 0.4035(5) & 0.0336(6) & -0.2867(11) & 3.0(3) \\ (264) & 0.413(12) & 3.0(4) \\ (265) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (265) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (265) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (265) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (265) & 0.4710(5) & 0.1234(6) & -0.0502(11) & 2.8(4) \\ (265) & 0.4710(5) & 0.1$                                                            | C(23) | 0.1539(6)  | -0.1761(6) | 0.3997(11)  | 3.5(4)              |  |
| C(25) $0.0476(6)$ $-0.1220(6)$ $0.3646(11)$ $3.2(4)$ C(26) $0.0695(6)$ $-0.0843(6)$ $0.2664(11)$ $2.9(4)$ C(31) $0.0964(5)$ $0.0710(6)$ $0.1005(10)$ $1.6(3)$ C(32) $0.0858(6)$ $0.0923(6)$ $0.2164(12)$ $3.6(4)$ C(33) $0.0377(6)$ $0.1451(6)$ $0.2436(11)$ $3.4(3)$ C(34) $-0.0004(6)$ $0.1707(6)$ $0.1471(12)$ $3.4(3)$ C(35) $0.0980(6)$ $0.1518(6)$ $0.0322(11)$ $3.4(4)$ C(36) $0.0593(5)$ $0.1030(5)$ $0.0048(11)$ $2.8(3)$ C(41) $0.1612(5)$ $0.0083(7)$ $-0.1744(9)$ $2.1(3)$ C(42) $0.1031(5)$ $-0.0179(6)$ $-0.2304(10)$ $2.6(3)$ C(43) $0.0929(5)$ $-0.0114(7)$ $-0.3579(10)$ $3.1(3)$ C(44) $0.1394(6)$ $0.0214(6)$ $-0.4246(11)$ $4.0(4)$ C(44) $0.1394(6)$ $0.0214(6)$ $-0.2431(12)$ $3.0(3)$ C(51) $0.3545(5)$ $-0.1428(6)$ $0.0042(10)$ $1.9(3)$ C(52) $0.3246(5)$ $-0.2736(7)$ $-0.1035(12)$ $5.0(4)$ C(53) $0.3371(6)$ $-0.2736(7)$ $-0.1035(12)$ $5.0(4)$ C(54) $0.3793(6)$ $-0.2736(7)$ $-0.10958(11)$ $2.5(3)$ C(51) $0.3948(5)$ $0.0346(5)$ $-0.0696(10)$ $1.4(3)$ C(54) $0.3745(5)$ $-0.01486(6)$ $-0.2867(11)$ $3.0(3)$ C(61) $0.3948(5)$ $0.0336(6)$ $-0.2867(11)$ $3.0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(24) | 0.0876(6)  | -0.1667(7) | 0.4346(12)  | 4.7(4)              |  |
| $\begin{array}{cccccc} (26) & 0.0695(6) & -0.0843(6) & 0.2664(11) & 2.9(4) \\ \hline C(31) & 0.0964(5) & 0.0710(6) & 0.1005(10) & 1.6(3) \\ \hline C(32) & 0.0858(6) & 0.0923(6) & 0.2164(12) & 3.6(4) \\ \hline C(33) & 0.0377(6) & 0.1451(6) & 0.2436(11) & 3.4(3) \\ \hline C(34) & -0.0004(6) & 0.1707(6) & 0.1471(12) & 3.4(3) \\ \hline C(35) & 0.0080(6) & 0.1518(6) & 0.0322(11) & 3.4(4) \\ \hline C(36) & 0.0593(5) & 0.1030(6) & 0.0048(11) & 2.8(3) \\ \hline C(41) & 0.1612(5) & 0.0083(7) & -0.1744(9) & 2.1(3) \\ \hline C(42) & 0.1031(5) & -0.0179(6) & -0.2304(10) & 2.6(3) \\ \hline C(43) & 0.0929(5) & -0.0114(7) & -0.3579(10) & 3.1(3) \\ \hline C(44) & 0.1394(6) & 0.0214(6) & -0.4246(11) & 4.0(4) \\ \hline C(45) & 0.1971(5) & 0.0474(6) & -0.3699(11) & 2.8(3) \\ \hline C(46) & 0.2069(5) & -0.0441(6) & -0.2431(12) & 3.0(3) \\ \hline C(51) & 0.3545(5) & -0.2736(6) & -0.0074(11) & 2.7(3) \\ \hline C(52) & 0.3246(5) & -0.2736(6) & -0.0074(11) & 2.7(3) \\ \hline C(52) & 0.3793(6) & -0.2736(7) & -0.1035(12) & 5.0(4) \\ \hline C(55) & 0.4091(6) & -0.2140(7) & -0.1470(11) & 4.3(4) \\ \hline C(56) & 0.4091(6) & -0.2140(7) & -0.1470(11) & 4.3(4) \\ \hline C(56) & 0.3974(5) & -0.1486(6) & -0.0958(11) & 2.5(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.0696(10) & 1.4(3) \\ \hline C(62) & 0.3763(5) & 0.0201(6) & -0.1888(10) & 2.0(3) \\ \hline C(61) & 0.3948(5) & 0.0346(5) & -0.2867(11) & 3.0(3) \\ \hline C(61) & 0.4316(2) & 0.0338(6) & -0.2867(11) & 3.0(3) \\ \hline C(64) & 0.4035(5) & 0.0201(6) & -0.1438(12) & 3.3(4) \\ \hline C(65) & 0.4419(5) & 0.0864(6) & -0.0502(11) & 2.8(4) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(25) | 0.0476(6)  | -0.1220(6) | 0.3646(11)  | 3 2(4)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(26) | 0.0695(6)  | -0.0843(6) | 0.2664(11)  | 2.9(4)              |  |
| C(32) $0.0858(6)$ $0.0923(6)$ $0.2164(12)$ $3.6(4)$ C(33) $0.0377(6)$ $0.1451(6)$ $0.2436(11)$ $3.4(3)$ C(34) $-0.0004(6)$ $0.1707(6)$ $0.1471(12)$ $3.4(3)$ C(35) $0.0080(6)$ $0.1518(6)$ $0.0322(11)$ $3.4(4)$ C(36) $0.0593(5)$ $0.1030(6)$ $0.0048(11)$ $2.8(3)$ C(41) $0.1612(5)$ $0.0083(7)$ $-0.1744(9)$ $2.1(3)$ C(42) $0.1031(5)$ $-0.0179(6)$ $-0.2304(10)$ $2.6(3)$ C(43) $0.0929(5)$ $-0.0114(7)$ $-0.3579(10)$ $3.1(3)$ C(44) $0.1394(6)$ $0.0214(6)$ $-0.4246(11)$ $4.0(4)$ C(44) $0.1394(6)$ $0.0214(6)$ $-0.3699(11)$ $2.8(3)$ C(46) $0.2069(5)$ $0.0441(6)$ $-0.2431(12)$ $3.0(3)$ C(51) $0.3545(5)$ $-0.1428(6)$ $0.0042(10)$ $1.9(3)$ C(52) $0.3246(5)$ $-0.2708(6)$ $-0.0469(10)$ $2.5(3)$ C(53) $0.3371(6)$ $-0.2736(7)$ $-0.1035(12)$ $5.0(4)$ C(55) $0.4091(6)$ $-0.2748(6)$ $-0.0958(11)$ $2.5(3)$ C(61) $0.3948(5)$ $0.0346(5)$ $-0.0696(10)$ $1.4(3)$ C(61) $0.3948(5)$ $0.0346(5)$ $-0.2867(11)$ $3.0(3)$ C(61) $0.3948(5)$ $0.0538(6)$ $-0.2267(21)$ $3.8(4)$ C(62) $0.3763(5)$ $0.0201(6)$ $-0.1433(12)$ $3.3(4)$ C(64) $0.4512(6)$ $0.10877(6)$ $-0.2262(12)$ $3.8(4)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(31) | 0.0964(5)  | 0.0710(6)  | 0,1005(10)  | 1.6(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(32) | 0.0858(6)  | 0.0923(6)  | 0.2164(12)  | 3.6(4)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(33) | 0.0377(6)  | 0.1451(6)  | 0.2436(11)  | 3.4(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(34) | -0.0004(6) | 0.1707(6)  | 0.1471(12)  | 3.4(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(35) | 0.0080(6)  | 0.1518(6)  | 0.0322(11)  | 3.4(4)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(36) | 0.0593(5)  | 0.1030(6)  | 0.0048(11)  | 2.8(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(41) | 0.1612(5)  | 0.0083(7)  | -0.1744(9)  | 2,1(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(42) | 0.1031(5)  | -0.0179(6) | -0.2304(10) | 2.6(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(43) | 0.0929(5)  | -0.0114(7) | -0.3579(10) | 3.1(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(44) | 0.1394(6)  | 0.0214(6)  | -0.4246(11) | 4.0(4)              |  |
| C(46) $0.2069(5)$ $0.0441(6)$ $-0.2431(12)$ $3.0(3)$ C(51) $0.3545(5)$ $-0.1428(6)$ $0.0042(10)$ $1.9(3)$ C(52) $0.3246(5)$ $-0.2035(6)$ $0.0469(10)$ $2.5(3)$ C(53) $0.3371(6)$ $-0.2708(6)$ $-0.0074(11)$ $2.7(3)$ C(54) $0.3793(6)$ $-0.2736(7)$ $-0.1035(12)$ $5.0(4)$ C(55) $0.4091(6)$ $-0.2140(7)$ $-0.1470(11)$ $4.3(4)$ C(56) $0.3974(5)$ $-0.1486(6)$ $-0.0958(11)$ $2.5(3)$ C(61) $0.3948(5)$ $0.0346(5)$ $-0.0696(10)$ $1.4(3)$ C(62) $0.3763(5)$ $0.0201(6)$ $-0.1888(10)$ $2.0(3)$ C(63) $0.4035(5)$ $0.0538(6)$ $-0.2867(11)$ $3.0(3)$ C(64) $0.4512(6)$ $0.1067(6)$ $-0.2625(12)$ $3.8(4)$ C(65) $0.4710(5)$ $0.1234(6)$ $-0.1433(12)$ $3.3(4)$ C(66) $0.4419(5)$ $0.0864(6)$ $-0.0502(11)$ $2.8(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(45) | 0.1971(5)  | 0.0474(6)  | -0.3699(11) | 2.8(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(46) | 0.2069(5)  | 0.0441(6)  | -0.2431(12) | 3.0(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(51) | 0.3545(5)  | 0.1428(6)  | 0.0042(10)  | 1.9(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(52) | 0.3246(5)  | -0.2035(6) | 0.0469(10)  | 2.5(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(53) | 0.3371(6)  | -0.2708(6) | -0.0074(11) | 2.7(3)              |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(54) | 0.3793(6)  | -0.2736(7) | -0.1035(12) | 5.0(4)              |  |
| C(56) $0.3974(5)$ $-0.1486(6)$ $-0.0958(11)$ $2.5(3)$ $C(61)$ $0.3948(5)$ $0.0346(5)$ $-0.0696(10)$ $1.4(3)$ $C(62)$ $0.3763(5)$ $0.0201(6)$ $-0.1888(10)$ $2.0(3)$ $C(63)$ $0.4035(5)$ $0.0538(6)$ $-0.2867(11)$ $3.0(3)$ $C(64)$ $0.4512(6)$ $0.1067(6)$ $-0.2625(12)$ $3.8(4)$ $C(65)$ $0.4710(5)$ $0.1234(6)$ $-0.1433(12)$ $3.3(4)$ $C(66)$ $0.4419(5)$ $0.0864(6)$ $-0.0502(11)$ $2.8(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(55) | 0.4091(6)  | -0.2140(7) | -0.1470(11) | 4.3(4)              |  |
| C(61) $0.3948(5)$ $0.0346(5)$ $-0.0696(10)$ $1.4(3)$ C(62) $0.3763(5)$ $0.0201(6)$ $-0.1888(10)$ $2.0(3)$ C(63) $0.4035(5)$ $0.0538(6)$ $-0.2867(11)$ $3.0(3)$ C(64) $0.4512(6)$ $0.1067(6)$ $-0.2625(12)$ $3.8(4)$ C(65) $0.4710(5)$ $0.1234(6)$ $-0.1433(12)$ $3.3(4)$ C(66) $0.4419(5)$ $0.0864(6)$ $-0.0502(11)$ $2.8(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(56) | 0.3974(5)  | -0.1486(6) | -0.0958(11) | 2.5(3)              |  |
| C(62) 0.3763(5) 0.0201(6) -0.1888(10) 2.0(3)   C(63) 0.4035(5) 0.0538(6) -0.2867(11) 3.0(3)   C(64) 0.4512(6) 0.1067(6) -0.2625(12) 3.8(4)   C(65) 0.4710(5) 0.1234(6) -0.1433(12) 3.3(4)   C(66) 0.4419(5) 0.0864(6) -0.0502(11) 2.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(61) | 0.3948(5)  | 0.0346(5)  | -0.0696(10) | 1.4(3)              |  |
| C(63) $0.4035(5)$ $0.0538(6)$ $-0.2867(11)$ $3.0(3)$ $C(64)$ $0.4512(6)$ $0.1067(6)$ $-0.2625(12)$ $3.8(4)$ $C(65)$ $0.4710(5)$ $0.1234(6)$ $-0.1433(12)$ $3.3(4)$ $C(66)$ $0.4419(5)$ $0.0864(6)$ $-0.0502(11)$ $2.8(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(62) | 0.3763(5)  | 0.0201(6)  | -0.1888(10) | 2.0(3)              |  |
| C(64) 0.4512(6) 0.1067(6) -0.2625(12) 3.8(4)   C(65) 0.4710(5) 0.1234(6) -0.1433(12) 3.3(4)   C(66) 0.4419(5) 0.0864(6) -0.0502(11) 2.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(63) | 0.4035(5)  | 0.0538(6)  | -0.2867(11) | 3.0(3)              |  |
| C(65) $0.4710(5)$ $0.1234(6)$ $-0.1433(12)$ $3.3(4)$ $C(66)$ $0.4419(5)$ $0.0864(6)$ $-0.0502(11)$ $2.8(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(64) | 0.4512(6)  | 0.1067(6)  | -0.2625(12) | 3.8(4)              |  |
| C(66) 0.4419(5) 0.0864(6) -0.0502(11) 2.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(65) | 0.4710(5)  | 0,1234(6)  | -0.1433(12) | 3.3(4)              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(66) | 0.4419(5)  | 0.0864(6)  | -0.0502(11) | 2.8(4)              |  |

# f a lite i fernitiete it

|        |                  |                 | e et la sette de la serverence |                     |  |
|--------|------------------|-----------------|--------------------------------|---------------------|--|
| 油曲     | ₩.               | f.              | 4                              | B (Å <sup>2</sup> ) |  |
| hitt   | 11.00 intin      | 10074360        | 11:4481(10)                    | 1,4(3)              |  |
| 得1款。   | ด้ สถิสสาดก      | 1111914111      | 0.9307(10)                     | 2,1(3)              |  |
| 日日     | 1 1341141        | 11 111 4 (4)    | (11)459441                     | 2.6(3)              |  |
| 招导的    | a Atalian        | 11 111 8 41 + 1 | 12 4 4 4 1 ( 1 2)              | 3.6(4)              |  |
|        | I ANA GIN        | 111144011       | (11/7/2481)                    | 3.2(3)              |  |
| 1111   | it thinks        | 1111444141      | 4234561                        | 2739                |  |
| (ian)  | 11:11:11:11      | 11164 112161    | 1.444.52                       | 133                 |  |
| 14461  | 161113 25 61     | 1514441721      | the to the the                 | <u>534</u>          |  |
| 144    | 1 2 2 2 2 80 900 | 11 ++++ 1 =>    | 2 1 10000                      | 174                 |  |
| 118.21 | 12 2 4 30 10 10  | 1 6 2 4 1 24    | LAND 22                        | 5.T.+4              |  |
| 11:45  | 14141 - 14       | 11 91,418,      | 5 Jellad 1.                    | 224                 |  |
| 144.91 | 11 13 8 14 11    | 11 1100000      | 1.20 201                       | 133                 |  |

and the second s

Electron the arres the art of the first of the first

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                        |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |
| 1. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec. Sec. Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and a starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    | ······································ | يعنسنان           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second sec |                                                                                                                                                                                                                                    |                                        | تتتعيين سيب       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ما معادية ما الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        | شتہ سے            |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No 21 Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C LOOP                                                                                                                                                                                                                             |                                        |                   |
| " the state of the | 1. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -> <b>&gt;****</b> **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        | same a subsect of |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. A 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                        |                   |
| - Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | معرف الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - the second second                                                                                                                                                                                                                |                                        |                   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                            | <del>- منظور بری</del> د.<br>          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second sec | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                  |                                        | التسبية.          |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : شكالمودين أحد -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                        |                   |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | بالمتحصين والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second sec |                                                                                                                                                                                                                                    |                                        | - 2.700           |
| A. 4. 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a straight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        | - <b></b>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second sec | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                        |                   |

والمعاجب والمعتجر والمعتجر ألمار وحرار والالا

hi philippi a philippi a second and the philippi a second a second and the philippi a second a second and the philippi a second a se

Refinement was based on F and weights were set according to  $w = 1/\sigma^2(F)$ ; the quantity minimized was  $\Sigma w(F_o - F_c)^2$ . Several cycles of refinement, the last two of which utilized anisotropic temperature factors for molybdenum and isotropic temperature factors for all carbon, oxygen and group atoms, led to convergence with  $R_f = \Sigma ||F_o| - |F_c||/\Sigma |F_o| = 0.070$  and  $R_{wF} = (\Sigma w(F_o - F_c)^2/$  $\Sigma w F_o^2)^{1/2} = 0.057$ . Hydrogen atom temperature factors  $B_H$  were set equal to  $3.2 \text{ Å}^2$  and were not refined. At this point, an attempt was made to refine the non-group atoms anisotropically. The anisotropic temperature factors for the light atoms were not very well-defined. All had relatively large errors which, for several atoms, were large enough to cause cofactors of the  $\beta$  matrix to be negative, yielding non-positive definite temperature factors.

Examination of the correlation matrix revealed 26 correlation coefficients with magnitudes >0.50; the largest of these (-0.99, 0.89 and 0.88) were between group variables and did not appear to be due to a poor choice of group axes. Because of the large correlation between group variables, full-matrix refinement was initiated. Beginning with the isotropically converged group parameters, three cycles of refinement utilizing anisotropic temperature factors for Mo and isotropic temperature factors for C and O atoms gave final values of  $R_F = 0.063$  and  $R_{wF} = 0.041$ . Because the ratio of the number of observations  $(N_{\rm o})$  to the number of variables  $(N_{\rm v})$  was not large (6.63), no further attempt was made to refine the light atoms anisotropically. For the final cycle, the average parameter shift was 0.06  $\sigma$ , where  $\sigma$  is the esd obtained from the inverse matrix. The final value for the error in an observation of unit weight, [ $\Sigma w$ - $(F_{o} - F_{c})^{2}/(N_{o} - N_{v})]^{1/2}$ , was 1.29. The Mo residual appeared as the largest peak  $(0.4 e/Å^3)$  on a final difference map. Final atomic parameters are listed in Table 1; hydrogen coordinates are given in Table 2. A list of observed and calculated structure factors is available \*.

## Description of the structure and discussion

The structure consists of discrete monomers of I, verifying the original assignment of Hübel and Merényi. In the crystal, the shortest non-hydrogen intermolecular contact is  $C(45)\cdots O(2')$  (3.43(1) Å). Neither this nor any remaining contact is short enough to indicate intermolecular interactions significantly stronger than those arising from Van der Waals forces.

Two views of the molecule showing the numbering scheme are given in Fig. 1 and 2. The phenyl groups are labeled such that carbon atoms C(N1) through C(N6) and hydrogen atoms H(N2) through H(N6) form the phenyl ring attached to the cyclobutadiene carbon atom C(NO). Selected interatomic distances and angles are given in Table 3, short intramolecular contacts are listed in Table 4, while the results of least-squares planes calculations are presented in Table 5.

The structure clearly reveals a tilted dicyclobutadiene geometry with each (Continued on p. 323)

<sup>\*</sup> The table of structure factors has been deposited as NAPS Document No. 03175 (10 pages). Order from ASIS/NAPS, c/o Microfiche Publications, 440 Park Avenue South, New York, N.Y. 10016. A copy may be secured by citing the document number, remitting \$ 5.00 for photocopies or \$ 3.00 for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.







Fig. 2. View of I approximately perpendicular to the plane of the carbonyl groups.

|                                                                                                                                                           |                                                    |                                                                              |                                                                                   |                                                                              | -                                                                                                                                                                                       |                                                                                        |                                                                                 |                                                                                                                                                                               |                                                                                                              | 5                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Atoms                                                                                                                                                     | Distance                                           | ¥                                                                            | toms                                                                              | Distanco                                                                     | Atoms                                                                                                                                                                                   |                                                                                        | Angle                                                                           | Atoms                                                                                                                                                                         | Angle                                                                                                        | 322                                                                                                              |
| Mo−C(1)<br>Mo−C(2)<br>Mo−C(10)<br>Mo−C(20)                                                                                                                | 1.987(13)<br>1.966(12)<br>2.346(11)<br>2.295(11)   | ŎŎŸŸ                                                                         | (1)C(1)<br>(2)C(2)<br>0C(50)<br>0C(60)                                            | 1.14(1)<br>1.16(1)<br>2.397(11)<br>2.291(9)                                  | C(1)-Mo-C(2)<br>CR(1)-Mo-CR<br>Mo-C(1)-O(1)<br>Mo-C(2)-O(2)                                                                                                                             | (3)                                                                                    | 83.6(5)<br>140.8<br>175.9(12)                                                   | CR(1)-Mo-C(1)<br>CR(1)-Mo-C(2)<br>CR(2)-Mo-C(1)<br>CR(2)-Mo-C(2)                                                                                                              | 102.6<br>105.2<br>107.4<br>102.6                                                                             | 1<br>1                                                                                                           |
| Mo-C(30)<br>Mo-C(40)<br>C(10)-C(20)                                                                                                                       | 2.283(10)<br>2.263(9)<br>1.48(1)                   | ΣΞŏ                                                                          | oC(70)<br>oC(80)<br>(5p)C(60)                                                     | 2.266(10)<br>2.287(11)<br>1.44(2)                                            | CR(1)-C(10)-C<br>CR(1)-C(20)-(<br>CR(1)-C(20)-(                                                                                                                                         | (11)<br>(21)<br>(31)                                                                   | 163,2<br>166.3<br>163,5                                                         | CR(2)-C(60)-C(61)<br>CR(2)-C(60)-C(61)<br>CR(2)-C(70)-C(71)                                                                                                                   | 165,5<br>169,8<br>159,0                                                                                      |                                                                                                                  |
| C(20)C(30)<br>C(30)C(40)<br>C(40)C(10)<br>C(10)C(11)                                                                                                      | 1,46(1)<br>1,46(1)<br>1,44(1)<br>1,47(2)           | 22223                                                                        | (60)C(70)<br>(70)C(80)<br>(80)C(60)<br>(80)C(61)                                  | 1,49(1)<br>1,47(1)<br>1,47(1)<br>1,47(1)                                     | CR(1)-C(40)-C<br>C(10)-C(20)-C<br>C(20)-C(30)-C<br>C(20)-C(40)-C                                                                                                                        | (41)<br>(30)<br>(10)                                                                   | 158.7<br>88.3(8)<br>90.8(10)<br>90.0(10)                                        | CR(2)-C(80)-C(81)<br>C(50)-C(60)-C(70)<br>C(60)-C(70)-C(80)<br>C(60)-C(70)-C(80)<br>C(70)-C(80)-C(60)                                                                         | 165.2<br>91.6(9)<br>86.8(9)<br>92.1(10)                                                                      |                                                                                                                  |
| C(20)                                                                                                                                                     | 1.48(1)<br>1.48(1)<br>1.50(1)                      | 3 8 8                                                                        | (00)                                                                              | 1.50(1)<br>1.45(1)<br>1.50(1)                                                | C(40)-C(10)-C<br>C(20)-C(10)-C<br>C(20)-C(10)-C<br>C(10)-C(20)-C<br>C(10)-C(20)-C<br>C(10)-C(20)-C<br>C(30)-C(20)-C<br>C(30)-C(40)-C<br>C(10)-C(40)-C<br>C(10)-C(40)-C<br>C(10)-C(40)-C | (20)<br>(11)<br>(11)<br>(21)<br>(31)<br>(31)<br>(41)<br>(41)<br>(41)                   | 90.7(9)<br>136(1)<br>129.4(9)<br>132(1)<br>136(1)<br>132(1)<br>136(1)<br>127(1) | C(80)-C(60)-C(60)<br>C(80)-C(60)-C(61)<br>C(60)-C(60)-C(61)<br>C(50)-C(60)-C(61)<br>C(70)-C(60)-C(71)<br>C(80)-C(70)-C(71)<br>C(70)-C(80)-C(71)<br>C(70)-C(81)<br>C(70)-C(81) | 89.5(10)<br>131(1)<br>136(1)<br>136(1)<br>133(1)<br>133(1)<br>133(1)<br>133(1)<br>133(1)<br>138(1)<br>136(1) |                                                                                                                  |
| Phenyl group dista<br>Atoms                                                                                                                               | ncos                                               | N = 1                                                                        | N = 2                                                                             | N = 3                                                                        | N = 4                                                                                                                                                                                   | 2 #<br>N                                                                               | 0 = N                                                                           | N = 7                                                                                                                                                                         | N = 8                                                                                                        |                                                                                                                  |
| C(N1)C(N6)<br>C(N5)C(N6)<br>C(N4)C(N5)<br>C(N3)C(N4)<br>C(N3)C(N3)<br>C(N1)C(N2)<br>C(N2)C(N2)                                                            |                                                    | 1.39(1)<br>1.39(1)<br>1.40(2)<br>1.39(2)<br>1.39(2)<br>1.39(1)               | 1.42(1)<br>1.38(2)<br>1.38(2)<br>1.41(1)<br>1.31(1)<br>1.38(2)<br>1.39(2)         | 1.41(1)<br>1.42(2)<br>1.33(1)<br>1.38(2)<br>1.38(2)<br>1.42(2)<br>1.36(1)    | 1,38(1)<br>1,41(1)<br>1,38(1)<br>1,38(1)<br>1,38(1)<br>1,42(1)<br>1,40(1)                                                                                                               | 1.42(1)<br>1.38(2)<br>1.36(2)<br>1.38(2)<br>1.38(2)<br>1.43(1)                         | 1.37(1)<br>1.38(2)<br>1.40(2)<br>1.40(2)<br>1.38(1)<br>1.38(1)                  | 1,39(1)<br>1,37(2)<br>1,38(1)<br>1,40(1)<br>1,38(1)<br>1,39(1)                                                                                                                | 1,40(1)<br>1,38(2)<br>1,37(2)<br>1,37(2)<br>1,38(2)<br>1,40(2)<br>1,40(1)                                    | and a second s |
| Phenyl group angl.<br>C(NO)C(N1)C<br>C(N0)C(N1)C<br>C(N2)C(N1)C<br>C(N2)C(N1)C<br>C(N2)C(N3)C<br>C(N3)C(N3)C<br>C(N5)C(N6)C<br>C(N5)C(N6)C<br>C(N6)C(N6)C | 28<br>(N 2)<br>N 6)<br>N 3)<br>N 4<br>N 1)<br>N 1) | 120(1)<br>120(1)<br>119(1)<br>119(1)<br>119(1)<br>120(1)<br>120(1)<br>120(1) | 123(1)<br>117(1)<br>120(1)<br>120(1)<br>12(1)<br>12(1)<br>12(1)<br>12(1)<br>12(1) | 123(1)<br>118(1)<br>119(1)<br>122(1)<br>116(1)<br>124(1)<br>119(1)<br>119(1) | 117(1)<br>123(1)<br>118(1)<br>120(1)<br>120(1)<br>120(1)<br>121(1)<br>119(1)                                                                                                            | 122(1)<br>119(1)<br>119(1)<br>121(1)<br>118(1)<br>118(1)<br>122(1)<br>120(1)<br>120(1) | 124(1)<br>119(1)<br>117(1)<br>123(1)<br>117(1)<br>121(1)<br>121(1)<br>123(1)    | 125(1)<br>117(1)<br>118(1)<br>122(1)<br>122(1)<br>118(1)<br>121(1)<br>121(1)                                                                                                  | 123(1)<br>121(1)<br>116(1)<br>122(1)<br>122(1)<br>120(1)<br>121(1)<br>121(1)                                 |                                                                                                                  |

322

TABLE 3. BOND DISTANCES (Å) AND ANGLES (deg)

| Atoms      | Distance | Atoms       | Distance |  |
|------------|----------|-------------|----------|--|
| C(1)…C(2)  | 2.63(2)  | C(11)C(51)  | 3.23(1)  |  |
| C(10)C(50) | 3.32(1)  | C(11)C(52)  | 3.05(2)  |  |
| C(1)C(30)  | 2.88(2)  | C(12)…C(51) | 3.35(2)  |  |
| C(1)C(40)  | 2.81(2)  | C(12)…C(52) | 3.34(2)  |  |
| C(1)C(60)  | 2.91(2)  | C(15)C(53)  | 3.46(2)  |  |
| C(1)…C(70) | 3.03(2)  | C(16)…C(52) | 3.18(1)  |  |
| C(2)…C(20) | 2.96(2)  | C(22)…C(81) | 3.42(1)  |  |
| C(2)…C(30) | 2.86(2)  | C(22)…C(82) | 3.43(2)  |  |
| C(2)C(70)  | 2.68(2)  | C(46)…C(62) | 3.46(1)  |  |
| C(2)C(80)  | 2.97(2)  |             |          |  |
|            |          |             |          |  |

SELECTED INTRAMOLECULAR CONTACTS SHORTER THAN 3.5 Å

molybdenum atom bonded to two carbonyl and two  $Ph_4C_4$  groups. Excluding the phenyl groups, the local point symmetry about molybdenum is approximately  $C_{2n}$  with mirror planes perpendicular to and in the plane of the carbonyl groups. The degree of tilt between the cyclobutadiene (CBD) groups may be gauged by the angle CR(1)—Mo—CR(2) (140.8°) or alternatively by the dihedral angle between least-squares planes of the cyclobutadiene rings  $(33.5^{\circ})$ . Here, CR designates the center of the CBD ring. The cyclobutadiene rings, whose average bond distances closely resemble those found for other cyclobutadienemetal complexes (Table 6), are nearly eclipsed and are slightly puckered as indicated by the dihedral angles C(20), C(30), C(40)/C(20), C(10), C(40) $(5.3^{\circ})$  and C(60), C(70), C(80)/C(60), C(50), C(80) (1.8^{\circ}). The phenyl groups are twisted from the plane of the associated CBD rings to varying degrees (Table 5) and are bent from the CBD planes, exo to molybdenum, by angles ranging from 12.3 to 22.2°. Bending and twisting of this magnitude for phenyl groups is common with tetraphenylcyclobutadienemetal complexes [10–13]. However, two of the phenyl groups, C(1N) and C(5N), which are opposite to the carbonyl groups, are nearly eclipsed, and the shortest contact between them (3.05(2) Å) is indicative of a weak secondary interaction.

Nonbonding intramolecular contacts suggest that the molecule is crowded sterically with the carbonyl groups wedged between the  $Ph_4C_4$  groups. Each C(CO) atom shows four short (2.68 to 3.03 Å) contacts to the CBD carbon atoms (Table 4). In addition, the C(CO)····C(CO) distance is also relatively short (2.63 Å). Thus, an increase or decrease in the C(1)--Mo--C(2) angle from its value of 83.6° is not possible without decreasing an already short C···C contact or without decreasing the CR(1)--Mo--CR(2) angle. A decrease in the latter would increase non-bonding repulsion between the  $Ph_4C_4$  groups, particularly in the vicinity of the phenyl groups C(1N) and C(5N) which are already in fairly close contact.

Both cyclobutadiene groups are bonded asymmetrically to Mo. As seen from the Mo–C(CBD) distances in Table 3, long Mo–C(CBD) distances are associated with the CBD carbon atoms furthest from the C(CO) atoms. Because of this asymmetric bonding, the spread in Mo–C(CBD) distances (2.26 to 2.38 Å) is considerably larger than that found typically with other structures containing substituted cyclobutadiene groups [10–13]. The average Mo–C(CBD) distance

324

|                | · ·                    |                | Least-s          | quares pla | nes    |        | at de la composition de la composition<br>La composition de la c |        |
|----------------|------------------------|----------------|------------------|------------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                |                        |                | A                | B          | C      | D      |                                                                                                                                                                                                                                    |        |
| Ring 1 [C(1)   | 0), C(20), (           | C(30), C(40)]  | 0.904            | 0.308      | 0.296  | 2.944  |                                                                                                                                                                                                                                    | · · ·  |
| Ring 2 (C(5    | D. C(60).              | C(70), C(80)1  | 0.958            | -0.246     | 0.145  | 7.130  |                                                                                                                                                                                                                                    |        |
| Phenyl 1 [C    | (11)-C(16              | )]             | 0.907            | -0.216     | 0.361  | 3.913  |                                                                                                                                                                                                                                    |        |
| Phenyl 2 [Ci   | (21) - C(26)           | 11             | 0.252            | 0.759      | 0.600  | 0.893  |                                                                                                                                                                                                                                    |        |
| Phenyl 3 [C    | (31) - C(36)           | 17             | -0.673           | -0.733     | 0.093  | -2.184 |                                                                                                                                                                                                                                    |        |
| Phenyl 4 [C    | (41) - C(46)           | )]             | -0.465           | 0.876      | 0.130  | -1.629 |                                                                                                                                                                                                                                    |        |
| Phenyl 5 $[Ci$ | (51) - C(56)           | )]             | 0.758            | -0.142     | 0.636  | 5.822  |                                                                                                                                                                                                                                    |        |
| Phenyl 6 [C    | (61) - C(66)           | 1              | -0.721           | 0.692      | 0.033  | -5.326 |                                                                                                                                                                                                                                    |        |
| Phenyl 7 [C    | (01) C(00<br>(71)_C(76 | 73<br>73       | 0 709            | -0.003     | 0 705  | -3 764 |                                                                                                                                                                                                                                    |        |
| Phenyl 8 [Co   | (81)-C(86              | )]             | 0.919            | 0.329      | 0.218  | 6.456  |                                                                                                                                                                                                                                    |        |
| Deviations o   | f atoms fro            | om the planes  | (Å) <sup>b</sup> |            |        |        |                                                                                                                                                                                                                                    |        |
| Phenyl rings   | N = 1                  | N = 2          | N = 3            | N = 4      | N = 5  | N = 6  | N = 7                                                                                                                                                                                                                              | N = 8  |
| C(N0) *        | 0.198                  | 0.024          | 0.116            | -0.215     | 0.122  | 0.012  | 0.079                                                                                                                                                                                                                              | -0.045 |
| C(N1)          | 0.010                  | 0.006          | 0.020            | 0.022      | 0.004  | 0.003  | 0.007                                                                                                                                                                                                                              | -0.016 |
| C(N2)          | 0.007                  | 0.000          | 0.013            | 0.004      | -0.002 | 0.007  | 0.019                                                                                                                                                                                                                              | 0.007  |
| C(N3)          | 0.007                  | -0.010         | -0.030           | 0.005      | 0.000  | -0.007 | -0.025                                                                                                                                                                                                                             | 0.002  |
| C(N4)          | 0.016                  | 0.014          | 0.014            | 0.005      | 0.000  | 0.002  | 0.006                                                                                                                                                                                                                              | -0.003 |
| C(N5)          | 0.013                  | -0.008         | 0.019            | -0.023     | 0.002  | 0.002  | 0.019                                                                                                                                                                                                                              | -0.007 |
| C(N6)          | 0.001                  | -0.002         | -0.036           | 0.031      | -0.004 | -0.002 | -0.026                                                                                                                                                                                                                             | 0.016  |
| Ring 1         | C(10)                  | -0.024         | C(11)*           | -0.4       | 74     |        |                                                                                                                                                                                                                                    |        |
|                | C(20)                  | 0.023          | C(21)*           | -0.2       | B7     |        |                                                                                                                                                                                                                                    |        |
|                | C(30)                  | -0.024         | C(31)*           | 0.4        | 76     |        |                                                                                                                                                                                                                                    |        |
|                | C(40)                  | 0.024          | C(41)*           | -0.4       | 80     |        |                                                                                                                                                                                                                                    |        |
|                | Mo*                    | 2.059          |                  |            |        |        |                                                                                                                                                                                                                                    |        |
| Ring 2         | C(50)                  | 0.008          | C(51)*           | 0.3        | 82     |        |                                                                                                                                                                                                                                    |        |
|                | C(60)                  | -0.008         | C(61)*           | 0.2        | 43     |        |                                                                                                                                                                                                                                    |        |
|                | C(70)                  | 0.008          | C(71)*           | 0.5        | 39     |        |                                                                                                                                                                                                                                    |        |
|                | C(80)                  | 0.008          | C(81)*           | 0.3        | 53     |        |                                                                                                                                                                                                                                    |        |
|                | Mo*                    | -2.061         |                  |            |        |        |                                                                                                                                                                                                                                    |        |
| Dihedral ang   | les betwee             | n planes (deg. | >                |            |        |        |                                                                                                                                                                                                                                    |        |
| Ring 1-Rins    | z 2                    | 33.5           | Ring 2-Ph        | enyl 7     | 123    | 5.2    |                                                                                                                                                                                                                                    |        |
| Ring 1-Pher    | nyl 1                  | 30.6           | Ring 2-Ph        | enyl 8     | 33     | 3.7    |                                                                                                                                                                                                                                    |        |
| Ring 1-Pher    | nyl 2                  | 50.2           | Phenyl 1-        | Phenyl 5   | 18     | 3.5    |                                                                                                                                                                                                                                    |        |
| Ring 1-Pher    | nyl 3                  | 143.8          | Phenyl 2-        | Phenyl 8   | 52     | 2.2    |                                                                                                                                                                                                                                    |        |
| Ring 1-Pher    | nvl 4                  | 96.4           | Phenyl 3-        | Phenyl 7   | 56     | 5.9    |                                                                                                                                                                                                                                    |        |
| Ring 2-Pher    | avl 5                  | 31.4           | Phenyl 4-        | Phenyl 6   | 19     | 9.0    |                                                                                                                                                                                                                                    |        |
| Ring 2-Pher    | avl 6                  | 148.9          |                  |            |        |        |                                                                                                                                                                                                                                    |        |

LEAST-SQUARES PLANES <sup>a</sup> AND DIHEDRAL ANGLES

<sup>a</sup> Equations have the form  $AX_0 + BY_0 + CZ_0 = D$  where  $X_0$ ,  $Y_0$  and  $Z_0$  are Cartesian axes lying along  $bxc^*$ , b and  $c^*$ , respectively.<sup>b</sup> Starred atoms were not used to define the plane.

in I is ~0.05 Å larger than that reported for  $[(Ph_4C_4)Mo(CO)_2Br]_2$  [10]; most of this lengthening is accounted for by the two long Mo-C(CBD) distances in I. Lastly, we note that long Mo-C(10) and Mo-C(50) contacts are consistent with the short C(CBD)...C(CO) contacts mentioned above; i.e., a decrease in either Mo-C(10) or Mo-C(50) would require a corresponding decrease in the

|                               | I <sup>a</sup> | [Ph <sub>4</sub> C <sub>4</sub> )Mo-<br>(CO) <sub>2</sub> Br] <sub>2</sub> | (C <sub>5</sub> H <sub>5</sub> )Nb-<br>(CO)(Ph <sub>2</sub> C <sub>2</sub> )-<br>(Ph <sub>4</sub> C <sub>4</sub> ) | (C <sub>5</sub> H <sub>5</sub> )V-<br>(CO) <sub>2</sub> (Ph <sub>4</sub> C <sub>4</sub> ) | (Ph <sub>4</sub> C <sub>4</sub> )Fe-<br>(CO) <sub>3</sub> |
|-------------------------------|----------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| C(CBD)—C(CBD) (Å)             | 1.46(2)        | 1.465(8)                                                                   | 1.46                                                                                                               | 1.47                                                                                      | 1.459(17)                                                 |
| CC (°)                        | 89.9(15)       | 90.0(4)                                                                    | 90.0                                                                                                               | 90.0                                                                                      | 90.0(10)                                                  |
| C(phenyl)—C(CBD) (Å)          | 1.48(2)        | 1.475(8)                                                                   | 1.48                                                                                                               | 1.46                                                                                      | 1.468(17)                                                 |
| MC(CBD) (Å)                   | 2.30(4)        | 2.253(6)                                                                   | 2.38                                                                                                               | 2.26                                                                                      | 2.067(12)                                                 |
| C(CO)—M—C(CO) (°)             | 83.6(5)        | 88.2(3)                                                                    | _                                                                                                                  | 89                                                                                        | 97.0(6)                                                   |
| $(Ph_4C_4)-M-\pi$ -ligand (°) | 140.8          | _                                                                          | 137                                                                                                                | 137                                                                                       | _                                                         |
| Reference                     | this work      | 10                                                                         | 11                                                                                                                 | 12                                                                                        | 13                                                        |

STRUCTURAL PARAMETERS FOR COMPLEXES CONTAINING Ph<sub>4</sub>C<sub>4</sub> GROUPS

<sup>a</sup> Standard deviations for numbers in this column were calculated using the equation  $s = [\Sigma(x_i - \bar{x})^2/(N-1)]^{1/2}$ .

already short C(CBD)...C(CO) contacts. Thus, the structural evidence is consistent with asymmetric  $Ph_4C_4$  bonding resulting from steric crowding between C(CBD) and C(CO) atoms.

Despite the apparent steric crowding in I, which conceivably could lead to relatively weak metal—ligand bonds, the complex appeared to be stable both in air and in solution; also, it exhibited sufficient volatility and thermal stability to permit its mass spectrum to be recorded. Under electron-impact conditions, the molecular ion of I underwent a two-step unimolecular carbonyl dissociation sequence to yield the carbonyl-free ion, which then degraded further to the bare metal ion by consecutive elimination of four neutral  $Ph_2C_2$  fragments. This fragmentation sequence, depicted in Fig. 3, is consistent with those reported previously for other cyclobutadienemetal [14] and tetraphenylcyclobutadienemetal [15] complexes. The presence of the PhCMo<sup>+</sup> (M/Z 187) ion in the mass spectrum of I suggests an alternative route for the decay of  $Ph_2C_2Mo^+$  to  $Mo^+$ via a two-step sequence involving elimination of PhC fragments (Fig. 3); this fragmentation mode has not been observed previously with cyclobutadienemetal complexes. A second feature of interest in the mass spectrum is the rela-



(III)  $(-) = CH_3$ 

| M/Z             | Relative<br>intensity | Fragmentation                                                                                |
|-----------------|-----------------------|----------------------------------------------------------------------------------------------|
|                 |                       | (Pb4C4)2Mo(CO)2<br>+e <sup>-</sup>                                                           |
| 866             | 54                    | $-2e^{-}$<br>(Ph <sub>4</sub> C <sub>4</sub> ) <sub>2</sub> Mo(CO) <sub>2</sub> <sup>+</sup> |
| 838             | 3                     | (Ph <sub>4</sub> C <sub>4</sub> ) <sub>2</sub> Mo(CO) <sup>+</sup>                           |
| 810             | 100                   | $(Ph_4C_4)_2Mo^+ \\ -Ph_2C_2$                                                                |
| 632             | 63                    | $(Ph_4C_4)(Ph_2C_2)Mo^+$ $Ph_2C_2$                                                           |
| 45 <del>4</del> | 98                    | $(Ph_4C_4)Mo^+$<br>-Ph <sub>2</sub> C <sub>2</sub>                                           |
| 276             | 21                    | (Ph <sub>2</sub> C <sub>2</sub> )Mo <sup>+</sup>                                             |
| 187             | 12                    | PhCMo <sup>+</sup> Ph <sub>2</sub> C <sub>2</sub>                                            |
| 98              | 6                     | Mo <sup>+</sup> (                                                                            |

김 유지는 것이 같은 것을 받았다.

Fig. 3. Proposed fragmentation pattern of I under electron impact conditions.

tively high abundance of the molecular ion (54% of the base peak,  $(Ph_4C_4)_2Mo^+$ ). In view of the high molecular weight of the complex \*, this implies a high stability for  $(Ph_4C_4)_2Mo(CO)_2^+$  (M/Z 866) which is consistent with the high thermal stability of the parent molecule. While it is also tempting to infer a high stability for the base peak,  $(Ph_4C_4)_2Mo^+$ , this could be misleading since the abundance of this ion will depend both on its rate of formation and decay.

Lastly, we comment on the apparent scarcity of dicyclobutadienemetal complexes. Substituted cyclobutadiene ligands are known to form a variety of mixed sandwich complexes with other  $\pi$ -ligands such as tetracyclone [2]. ferracyclopentadiene (e.g. IV [17] and V [18]), cyclopentadienyl [19,20], benzene [21], cyclooctatetraene [22] and others [23]. This observation, taken together with the apparent high stability of I, suggests that the scarcity of dicyclobutadienemetal complexes might be due to synthetic complications rather than an inherent instability.

<sup>\*</sup> Mass spectra of organometallic compounds with molecular weights greater than 750 are extremely rare [16].

#### Acknowledgement

We thank the Rutgers Computing Center for computer time, and the Research Council and the School of Chemistry of Rutgers University for partial financial support.

# References

- 1 F.L. Bowden and A.B.P. Lever, Organometal. Chem. Rev., 3 (1968) 227.
- 2 W. Hühel and R. Merényi, J. Organometal. Chem., 2 (1964) 213.
- 3 J.A. Potenza, R.J. Johnson, R. Chirico and A. Efraty, Inorg. Chem., 16 (1977) 2354.
- 4 P. Coppens and R.F. Stewart, ABSORB Program.
- 5 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.
- 6 S.J. LaPlaca and J.A. Ibers, Acta Cryst., 18 (1965) 511.
- 7 J. Potenza, P. Giordano, D. Mastropaolo and A. Efraty, Inorg. Chem., 13 (1974) 2540.
- 8 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham England, 1974, p. 71--98.
- 9 Ref. 8, p. 148-151.
- 10 M. Mathew and G.J. Palenik, J. Organometal. Chem., 61 (1973) 301.
- 11 A.I. Gusev and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 515.
- 12 A.I. Gusev, G.G. Aleksandrov and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 655.
- 13 R.P. Dodge and V. Schomaker, Acta Cryst., 18 (1965) 614.
- 14 A. Efraty, M.H.A. Huang and C.A. Weston, J. Organometal. Chem., 91 (1975) 327.
- 15 R.B. King and A. Efraty, Org. Mass. Spectrom., 3 (1970) 1233.
- 16 M.I. Bruce, Advan. Organometal. Chem., 6 (1968) 273; M. Cais and M.S. Lupin, ibid., 8 (1970) 211.
- 17 E.F. Epstein and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 502.
- 18 E.F. Epstein and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 493.
- 19 P.M. Maitlis, A. Efraty and M.L. Games, J. Amer. Chem. Soc., 87 (1965) 719; P.M. Maitlis and A. Efraty, J. Organometal. Chem., 4 (1965) 172.
- 20 R.B. King and A. Efraty, Chem. Commun., (1970) 1370.
- 21 A. Efraty and P.M. Maitlis, J. Amer. Chem. Soc., 89 (1967) 3744.
- 22 H.O. Van Oven, J. Organometal. Chem., 55 (1973) 309.
- 23 P.M. Maitlis, Advan. Organometal. Chem., 4 (1966) 95.